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ABSTRACT

A general analysis of poroelasticity for vertical transeer
isotropy (VTI) shows that four eigenvectors are pure shezten
with no coupling to the pore-fluid mechanics. The remainvag t
eigenvectors are linear combinations of pure compressiah a
uniaxial shear, both of which are coupled to the fluid mechan-
ics. After reducing the problem to ax22 system, the analysis
shows in a relatively elementary fashion how a poroelagte s
tem with isotropic solid elastic frame, but with anisotraptro-
duced through the poroelastic coefficients, interacts thighme-
chanics of the pore fluid and produces shear dependence @n flui
properties in the overall mechanical system. The analysiws,
for example, that this effect is always present (though sines
small in magnitude) in the systems studied, and can be quge |
(up to a definite maximum increase of 20 per cent) in some rocks
— including Spirit River sandstone and Schuler-Cotton &all
sandstone.

INTRODUCTION

An important paper by Gassmann [1] concerns the effects of
fluids on the mechanical properties of porous rock. His main r
sult is the well-known fluid-substitution formula (that ndsars
his name) for the bulk modulus in undrained, isotropic peroe
lastic media. He also postulated that the effective sheat-mo
ulus would be independent of the mechanical propertiesef th
fluid when the medium is isotropic. That the independence of
shear modulus from fluid effects is guaranteed for isotropée

dia at very low or quasistatic frequencies was shown regéoytl
Berryman [2] to be tightly coupled to the original bulk modu-
lus result of Gassmann; each result implies the other indpat
media. It has gone mostly without discussion in the litematu
that Gassmann [1] also derived general results for anigiatro
porous rocks in the same 1951 paper. It is not hard to see that
these results imply that, contrary to the isotropic case otrer-

all undrained shear modulus in fact generally does depend on
fluid properties in anisotropic media. However, Gassmapa’s

per does not remark at all on this difference in behavior betw
isotropic and anisotropic porous rocks. Brown and Korrifg8]a
also address the same class of problems, including botiofsot

and anisotropic cases, but again they do not remark on tta she
modulus results in either case. Norris [4] studies partlis
ration in isotropic layered materials in the low-frequenegime

(~ 100 Hz) and takes as a fundamental postulate that Gassmann'’s
results hold for the low frequency shear modulus, but it seem
that some justification should be provided for such an assump
tion, and furthermore some indication of its range of vayidis-
tablished.

On the other hand, Hudson [5], in his early work on
cracked solids, explicity demonstrates differences betw
fluid-saturated and dry cracks and relates his work to that of
Walsh [6] and O’Connell and Budiansky [7], but does not make
any connection to the work of either Gassmann [1], or Brown
and Korringa [3]. Mukerji and Mavko [8] show numerical re-
sults based on work of Gassmann [3], Brown and Korringa [3]
and Hudson [5] demonstrating the fluid dependence of shear in



anisotropic rock, but again they do not remark on these teatl

all. Mavko and Jizba [9] use a simple reciprocity argumermisto
tablish a direct, but approximate, connection betweenaindd
shear response and undrained compressional responsek roc
containing cracks. Berryman and Wang [10] show that devia-
tions from Gassmann'’s results sufficient to produce sheaumo
lus dependence on fluid mechanical properties require e pr
ence of anisotropy on the microscale, thereby explicithfating

the microhomogeneous and microisotropy conditions intptic
Gassmann’s original derivation. Berrymahal. [11] go fur-

ther and make use of differential effective medium analysis
show explicitly how the undrained, overall isotropic sheexd-

ulus can depend on fluid trapped in penny-shaped cracks.-Mean
while, laboratory results (see Berrymeainal. [12]) show conclu-
sively that the shear modulus does depend on fluid mechanical
properties for low-porosity, low-permeability rocks, ahih-
frequency laboratory experiments £ 500 kHz).

One thing lacking from all the preceding work is a simple
example showing how the presence of anisotropy influenees th
shear modulus, and specifically when and how the shear m®dulu
becomes fluid dependent. Our main purpose in the present work
is therefore to demonstrate, in a set of rather simple exesnpl

FLUID-SATURATED POROELASTIC MEDIA

In contrast to traditional elastic analysis, the presencedk
of a saturating pore fluid introduces the possibility of adiad
tional control field and an additional type of strain varablhe
pressureps in the fluid is a new field parameter that can be con-
trolled. Allowing sufficient time for global pressure edhitation
will permit us to considep; to be a constant throughout the per-
colating (connected) pore fluid, while restricting the g to
guasistatic processes. The chafdde the amount of fluid mass
contained in the pores (see Biot [17] or Berryman and Thigpen
[18]) is a new type of strain variable, measuring how much of
the original fluid in the pores is squeezed out during the com-
pression of the pore volume while including the effects aheo
pression or expansion of the pore fluid itself due to changes i
ps. Itis most convenientto write the resulting equations imte
of compliances rather than stiffnesses, so the basic eutti
be considered takes the following form for isotropic media:
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how the shear behavior becomes dependent on fluid properties

in anisotropic media — even though overall shear moduluk is a
ways independent of the fluid properties in microhomogeseou
isotropic media at sufficiently low frequencies, whetheaided

or undrained. Two other distinct but related analyses addre
ing this topic have been presented recently by the authot {13
Both of these prior papers have made explicit use of layered m
dia, composed of isotropic poroelastic materials, togettith
exact results for such media based on Backus averaginglfi5].
contrast, the present analysis doesmake use of such a specific
model, and is therefore believed to be about as simple a$ poss
ble, while still achieving the level of understanding dedirfor
this rather subtle technical issue. One important simpliiox

we make here in order to separate what part is due to pormelast
effects, and what part would be present in any elasgg possi-

bly zero permeability porous medium) is to model each malteri
as if the elastic part is entirely isotropic, while the pdestic
effects (.e., the Biot-Willis coefficients [16] for the anisotropic
overall material) supply the only source of anisotropy ia $lys-
tem. Thus, we specifically distinguish two possible sounfes
anisotropy, the elastic or “hard” anisotropy that is assdimet

to be present here, and the poroelastic or “soft” anisottbatis
the source of all the effects we want to study in this paper.

Our analysis for general transversely isotropic mediaés pr
sented in the next three sections. In particular the “eigetors”
section also introduces the effective undrained shear fosdel-
evant to our general discussion. Examples are then prestmte
two sandstones. The paper’s results and conclusions amaum
rized in the final section.

whereg; andajj fori, j = 1,2,3 are the components of overall
strain and stress, respectively, in 3D. The constants aingea
the matrix on the right hand side will be defined in the follogi
two paragraphs. It is important to write the equations they w
rather than using the inverse relation in terms of the giffes,
because the complianceg appearing in (1) are simply related
to the drained elastic constaitg andGq; in the same way they
are related in normal elasticity, whereas the individuéhs&tsses
obtained by inverting the equation in (1) must contain coupl
terms through the parametgrandy that depend on the pore and
fluid compliances. Thus, we find that

1 )\dr‘f'Gdr

Sl = —— 2
! Edar  Gar(3Adr+ 2Gqr) @)
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Vdr
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2 Eqr )

where the drained Young's modulHg; is defined by the second
equality of (2) and the drained Poisson'’s ratio is deterchimg

)\dr

= 4
vr 2(Agr + Gar) “)



When the external stress is hydrostatiazse 011 = 022 =
033, equation (1) telescopes down to

()

wheree = ex1 + €2+ €33, Kar = Agr + 3Gy is the drained bulk
modulusa = 1— Kq4;/Kn is the Biot-Willis parameter [16] with
Km being the bulk modulus of the solid minerals present, and
Skempton’s pore-pressure buildup paramBtgr9] is given by

1/Kdr _G/Kdr
—a/Kgr o/BKgr

o
— P

(%)

B 1
T 14+ Kp(1/Ks —1/Km)

(6)

New parameters appearing in (6) are the bulk modulus of the
pore fluidK; and the pore modulu'é,g1 = a /@Ky wheregis the
porosity. The expressions farandB can be generalized slightly
by supposing that the solid frame is composed of more than one
constituent, in which case th§, appearing in the definition of
a is replaced byKs and theK,, appearing explicitly in (6) is re-
placed byK,, (see Brown and Korringa [3], Rice and Cleary [20],
Berryman and Wang [21]). This is an important additional eom
plication [22], but — for the sake of desired simplicity — wélw
not pursue the matter further here.

Comparing (1) and (5), we find that

a
B= Ky (7)
and
a
V=BG (8)

RELATIONS FOR ANISOTROPY IN POROELASTIC
MATERIALS

Gassmann [1], Brown and Korringa [3], and many others
have considered the problem of obtaining effective cortistim
anisotropic poroelastic materials when the pore fluid idioe«d
within the pores. The confinement condition amounts to a con-
straint that the increment of fluid conteht 0, while the exter-
nal loadingo is changed and the pore-fluid pressprés allowed
to respond as necessary and thus equilibrate.

To recall an elementary derivation of the Gassmann equation
for anisotropic materials, we consider the anisotropicgealiva-
tion of (1)
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Three shear contributions have been immediately excluaexal f
consideration since they can easily be shown not to intenaet
chanically with the fluid effects. This form is not complstel
general in that it includes only orthorhombic, cubic, hexaa,
and all isotropic systems. Also, we have assumed that the-mat
rial axes are aligned with the spatial axes. But this latteuenp-
tion is not significant for the derivation that follows. Suah
assumption is important when properties of laminated risdser
having arbitrary orientation relative to the spatial axesato be
considered, but we do not treat this more general problem her
If the fluid is confined (or undrained on the time scales of in-
terest in applications to high frequency wave propagatiten
(=0in (9) andps becomes a linear function @fy1, 022, 033.
Eliminating ps from the resulting equations, we obtain the gen-
eral expression for the strain dependence on externasstreter

such undrained conditions:
B1 011
B2 | (B1 B2 B3) | | 022
B3 033
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Si2 2 S3 | | 022 - (10)
Si3 3 S33 033

Thesj’s are fluid-drained constants, while tq}a’s are the fluid-
undrained (or fluid-confined) constants.

The fundamental result (10) was obtained earlier by both
Gassmann [1] and Brown and Korringa [3], and may be written
simply as

. BiB;

for i,j=1,2,3. (12)

This expression is just the anisotropic generalizatiomefwell-
known Gassmann equation for isotropic, microhomogeneous
porous media.

EIGENVECTORS FOR TRANSVERSE ISOTROPY

The 3x 3 system (10) can be analyzed fairly easily, and in
particular the eigenfunctions and eigenvalues of thisesgstan
be obtained in general. However, such general results do not
provide much physical insight into the problem we are tryimg
study, so instead of proceeding in this direction we will new
strict attention to transversely isotropic materials. sTtase is
relevant to many layered earth materials and also indusyr&a
tems, and it is convenient because we can immediately edi@in
one of the eigenvectors from further consideration. Thre&um



ally orthogonal (but unnormalized) vectors of interest are

1 1 1
V1 = 1 R Vo = -1 R V3 = 1 (12)
1 0 2

Treating these vectors as stresses, the first correspoadsine
ple hydrostatic stress, the second to a planar shear steds,
the third to a pure shear stress applied uniaxially alongzthe
axis (also the same as the symmetry axis for the layeredmyste
Transverse isotropy of the layered system requiges:= o,
S13 = S3, and for the poroelastic problefa = 2. Thus, it is
immediately apparent that the planar shear stvg$s an eigen-
vector of the system, and furthermore it results in no cbation
from the pore fluid. Therefore, this vector will be of no fueth
interest here, and the system can thereby be reduced & 2

Compliance Formulation

If we define the effective compliance matrix for the system
as S* having the matrix elements given in (11), then the bulk
modulus for this system is defined in termssmhy

1

Ky

1

el A CES

=V]S'v = (13)

where theT superscript indicates the transpose, an#gl =
zszlsj. This is the result usually quoted as Gassmann’s
equation for the bulk modulus of the undrained (or confined)
anisotropic (VTI) system. Also, note that in general

3
'Z\Bi =2B1+ B3 = a/Kyr. (14)

Thus, even thougty is not an eigenvector of this system, it nev-
ertheless plays a fundamental role in the mechanics. Rurthe
more, this role is quite well-understood. What is perhapssno
well-understood then, especially for poroelastic systemhe
role of v3. Understanding this role will become our main focus
for the remainder of this discussion.
The true eigenvectors of the subproblem of interest, (n
the space orthogonal to the four pure shear eigenvect@adir
discussed) are necessarily linear combinations @ndvs. We
can construct the relevant contracted operator for tke2 Zub-
system by considering:
vi
(4

9A}, 18A;3> (15)

)5 ()= (154, 3u

(in all cases the superscripts indicate that the pore-fluid effects
are included) and the reduced matrix

T = A Vvl + Aig(Vavd +vav] ) + Ajavavl, (16)
where
Al1 = [2(s11+S12+ 2513) +S33)/9,
Alz= (S11+Si2—Si3—$33)/9; (17)

Ag3 = (S11+S1p— 4813+ 2533) /18,

Providing some understanding of these connections andrthe i
plications for shear modulus dependence on fluid contemés o
purpose for this work.

First we remark thaf;; = 1/9Ky, whereKy is again the
undrained (or Gassmann) bulk modulus for the system in (13).
Therefore A7, is proportional to the undrained bulk compliance
of this system. The other two matrix elements cannot be given
such simple interpretations in general. To simplify thelgna
sis we note that, at least for purposes of modeling, anipptro
of the compliances;j and the poroelastic coefficierfts can be
treated independently. Anisotropy displayed in #)és corre-
sponds mostly to the anisotropy in the solid elastic comptme
of the system, while anisotropy in tif#'s corresponds mostly
to anisotropy in the shapes and spatial distribution of t@g-
ity. We will therefore distinguish these contributions balle
ing anisotropy appearing in trsy’s the “hard anisotropy,” and
the anisotropy in theli’s will in contrast be called the “soft
anisotropy.”

Now, it is clear that the eigenvectof$0) for this problem
(i.e., for the reduced operat@r) necessarily take the form

cosd sin@

f(6) = Wvl—k %Vsa

(18)

with two solutions for the rotation angl®._ and®, =6+ 7,
guaranteeing that the two solutions (the eigenvectors)rdneg-
onal. Itis easily seen that the eigenvalues are given by

N =3 Mg A2 1Ay~ Ay 22 20| (19

and the rotation angles are determined by

N3 A
V2R,

s A2 [l A 207 20 VA (20)

tan@} =




One part of the rotation angle is due to the drained (fluid)free
“hard anisotropic” nature of the rock frame material. Welwil
call this part8. The remainder is due to the presence of the fluid
in the pores, and we will call this pad® = 6* — 0 for the “soft
anisotropy.” Using a standard formula for tangents, we have

tan®’, — tanéi

30, =tan | ————— |
==an {1+tanejttan9J

(21)

Furthermore, definite formulas fd@. are found from (20) by
takingy — o (corresponding to air saturation of the pores).

Since

tan@’ -tan@* = —1, (22)

it is sufficient to consider just one of the signs in front o tiad-
ical in (20). The most convenient choice for analytical msgs
turns out to be the minus sign (which corresponds to the eigen
vector with the larger component of pure compression).Heurt
more, it is also clear from the form of (20) that often the habia
of most interest to us here occurs for cases whign# 0.

In the limit of a nearly isotropic solid frame (so the “hard
anisotropy” vanishes and thus we will also call this the “gjua
isotropic” limit), it is not hard to see that

1 (Bi—Bs)?

33~ 120Gy, 9y (23)

where Gy, is the drained shear modulus of the quasi-isotropic
solid frame. Similarly, the remaining coefficient

B1—B3)(2P1+Ba)
9y b

Ajg~— ( (24)

since all the solid contributions approximately cancel s t
limit.

Expanding the square root in (19), we also have

N, =6A5+A and A" =3A7—A, (25)

whereA is defined consistently by either of the two preceeding
expressions or by®= A" — A* + 3A11 — 6Az3.

Stiffness formulation

The dual to the problem just studied replaces compliances

everywhere with stiffnesses, and then proceeds as befqra-E
tions (15)—(18) are replaced by
vi
V3

9B}, 188j3) (26)

>C* (vavs) = <188’£3 3681,

(in all cases the superscripts indicate that the pore-fluid effects
are included) and the reduced matrix

(Z) "t = Bjviv] +Bis(vavl +vav] ) + Biavavl,  (27)
where
Bi1 = [2(C11 +Cio+ 2C13) +C33/9,
Bis= (Ci1+Ci2—Ciz—C33)/9, (28)

B33 = (C11+C12— 4Ci3+2C53)/18.

It is a straightforward exercise to check that the two reduce
problems are in fact inverses of each other. We will not repea
this analysis here, as it is wholly repetitive of what haseba-
fore. The main difference in the details is that the exporssi
for the B’s in terms of thef’'s are rather more complicated than
those for the compliance version, which is also why we chose t
display the compliance formulation instead.

Effective and undrained shear moduli  Ggtf and Gy

Four shear moduli are easily defined for the anisotropic sys-
tem under study. Furthermor&; = Gy, fori =1,...,4, since
these are all related to the four shear eigenvectors of the sy
tems, and these do not couple to the pore-fluid mechanics. But
the eigenvectors in the reducedx2 system studied here are
usually mixed in character, being quasi-compressionalasi
shear modes. It is therefore somewhat problematic to find a
proper definition for the fifth shear modulus. The author hess a
lyzed this problem previously [13], and concluded that si®a
(though approximate) definition can be made usBig= Gef.
There are several different ways of arriving at the samdtrdmut
for the present analysis the most useful of these is to ex(a$
in terms of the produch A _ (the eigenvalue product, which is
also the determinant of the2 compliance system). The result,
which will be quoted here without further discussion (seg][1
for details), is

1 1 _ x Ak * \2
3. 2ars - AeN- = 18[A11A5— (Alg)7] - (29)
And, sinceA;; = 1/9K,, we have
1 * * \2 *
Gore 12[A33— (Alg)*/AL] - (30)
eff

To obtain one choice for an isotropic average overall umehi
shear modulus, we next take the arithmetic mean of the fivarshe



compliances:
1 121
Combining these definitions and results gives:
1 1 4(B—Py)*aB
Gu Gdr - 15 1_GB Kdr
4 (Bi-By[1 1
15 1-aB |Ky Kgr

The s are defined b = BiKqr/a. The final equality is pre-
sented to emphasize the similarity of the present resuttsose
of Mavko and Jizba [9] and Berrymaat al. [11]. SettingP3; =0,

% =1,B=1, anda ~ 0 recovers the expressions of Mavko and
Jizba [9] for the case of a very dilute system of flat cracks.

Note that (31) is just the Reuss average (lower bound) of the
shear modulus. Also note that the definition (308gf s is actu-
ally based on the Voigt average. In terms of mathematicakyig
the result (32) therefore cannot be considered rigorousniéi-
ther an upper nor a lower bound. The justification for the falan
comes not from absolute rigor, but instead from frequenépbs
vations thatGe¢ ¢ is in fact a very close estimate of the energy per
unit volume in the fifth shear mode and from the knowledge that

EXAMPLES AND DISCUSSION

It is clear from (25) that fluid effects iA cannot increase
the overall compliance eigenvalues simultaneously foh loé
guasi-bulk and the quasi-shear modes. Rather, if one isesgea
then the other must decrease. Furthermore, it is certaiwgys
true that the presence of pore liquid either has no effectsar e
strengthensif., stiffens) the porous medium in compression.
But this effect on the bulk modulus has been at least partiall
accounted for irA}; = 1/9K* through the original contribution
derived by Gassmann [1]. So presumably the contributiantof
compliance cannot be so large as to negate completely thid lig
effects on the undrained bulk modulus.

Examples

To clarify the situation, we show some examples in Figures
1-4. The details of the analysis that produces these figuees a
summarized in the Appendix. The main point is that, for the
compliance version of the analysis, the contours of congtian
ergy are ellipses when the vectérin (18) is interpreted as a
stress. Analogously, when the vector is treated as a stian,
contours of constant energy are ellipses for the dual (finess)
formulation. If we choose to think of these figures as diagram
in the complex plane, then we note that — while circles aneklin
transform to circles and lines when transforming back amthfo

the Reuss average for compressional modulus tends to be mucHetween these two planes — the shapes of ellipses are not pre-

closer (than does the Voigt average) to observed resultadoy
composite systems. So, for these reasons, the result (8aldsh
be viewed, not as a rigorous formula (it is not), but as a good
physical estimate of the undrained shear modulus.

TABLE. Elastic and poroelastic parameters of the two rock
samples considered in the text. Bulk and shear moduli of the
grainsKy, andGp, bulk and shear moduli of the drained porous
frameKqy, andGy,, the effective and undrained shear moduli
Gett andGy, and the Biot-Willis parameter = 1 — Ky /K.
The porosity igp.

Elastic/Poroelastic Schuler-Cotton Valley] Spirit River
Parameters Sandstone Sandstone
Gm (GPa) 36.7 69.0
Gy (GPa) 17.7 12.41
Gyr (GPa) 15.7 11.33
Geit (GPa) 35.8 20.11
Km (GPa) 41.8 30.0
Kar (GPa) 131 7.04

a 0.687 0.765
[0} 0.033 0.052

served (except, of course, in the special case — which isgalgc
that of isotropy — when the ellipses degenerate to circleiglen-
vectors are determined by the directions in which the pafits
contact of these two curves lie (indicated by red circles).

For the two sets of examples considered here, the values
used for the moduli of the samples are taken from results con-
tained in Berryman [23] wherein it was shown how certain lab-
oratory data could be fit using an elastic differential effex
medium scheme. These results are summarized inABeeT.

Figures 1 and 2 present results for Schuler-Cotton Valley
sandstone. Laboratory data on this material were also pede
by Murphy [24]. The values chosen f@q and 33 were3; =
0.200 /K4 andfz = 0.600 /Kq,. The value of the energy per unit
volume used for normalization was ~ 900.0 GPa. Computed
values for the effective and undrained shear moduli V&g =
35.8 GPa and5, = 17.7 GPa.

Figures 3 and 4 present results for Spirit River sandstone.
Laboratory data on this material were presented by Knight an
Nolen-Hoeksema [25]. The values chosen fferand 33 were
B1 = 0.250 /Ky, andfBs = 0.500 /Kg,. The value of the energy
per unit volume used for normalization was~ 9000 GPa.
Computed values for the effective and undrained shear modul
wereGess = 20.11 GPa and5, = 12.41 GPa.
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0
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Figure 1. For Schuler-Cotton Valley Sandstone [24] having bulk modu-
lus Kgr = 13.1 GPa and shear modulus G4 = 15.7 GPa, the locus of
points Z= Ré® [see equation (34)] having constant energy U = 900
GPa, when the linear combination of pure compression and pure uniax-
ial shear is interpreted as strain field applied to the stiffness matrix (solid
black line). The plot is in the complex Z-plane, with the inverse of the cor-
responding expression for the compliance energy superposed for com-
parison (dashed blue line). Red circles at the two points of intersection
correspond to the two eigenvectors of the system of equations. The el-
lipse (solid black line) in this plane corresponds to the more complex curve
in Figure 2.

Discussion

We can compare the results obtained with results obtained

for the same rocks using differential effective medium tiyeo
fit data. The two characteristics that will interest us heee él1)

comparisons between the values chosen in our examplessfor th
anisotropicf’s and the best fitting crack aspect ratios found in
[23], and (2) comparisons between the magnitudes of changes

the overall shear moduli from their drained to undrainedigal

The preferred crack aspect ratios found for Schuler-Cotton

Valley sandstone and Spirit River sandstone in [23] werpaes
tively, 0.015 and 0.0125. Here we found th@,(33) for the same
samples were, respectively, (0.20,0.60) and (0.25,0G@prly,

these values are at least weakly correlated with those cdighe

pect ratios for the same samples, but no stronger conclisemm
be reached at the present time concerning these values.

SCHULER-COTTON VALLEY SS

Normalized Uniaxial Shear Stress
w

0 1/ 1
-3 -2 -1 0 1 2 3 4
Normalized Compressional Stress

Figure 2. Same parameters as Figure 1, but the linear combination of
pure compression and pure uniaxial shear is interpreted as a stress field
and is applied to the compliance matrix (dashed blue line). The plot is
again in the complex Z-plane, with the inverse of the corresponding ex-
pression for the stiffness energy superposed for comparison (solid black
line). Red circles at the two points of intersection correspond to the two
eigenvectors of the system of equations. The ellipse (dashed blue line
here) corresponds to the more complex curve in Figure 1.

all cases. We conclude that the theory presented here eotigrr
predicting the magnitudes of these shear modulus enhamteme
due to pore-fluid effects.

SUMMARY AND CONCLUSIONS

The preceding discussion shows how overall shear modulus
dependence on pore-fluid mechanics arises in simple apjsotr
(the specific example used was transversely isotropic) anedi
The results demonstrate in an entirely elementary fashan h
compression-to-shear coupling enters the analysis feotmoipic

Similarly, the comparisons of the changes in shear modulus materials, and furthermore hoyv this c_oup_)ling leads to divera
magnitude from drained to undrained also show a weak corre- Shear dependence on mechanics of fluids in the pore system.

lation. The increases in shear moduli observed in the medsur
laboratory data for Schuler-Cotton Valley sandstone andtSp

These effects need not always be large. However, the ef-
fect can be very substantial (on the order of a 10% to 20% in-

River sandstone are, respectively, about 10%, and 20%. &s se crease in the overall shear modulus) in cracked or fractomad
in the TABLE, the magnitude of the changes predicted here is terials, when these pores are liquid-filled. The anisotrapgt
also about 10% in both cases. In fact, we know from related liquid stiffening effects then both come strongly into playthe

work in [14] that the maximum effect on shear for any hetero-

results we see, such as those illustrated in Figures 1-4rtitp

geneous, saturated porous medium is a 20% increase. So thaular, if 31 ~ 3, then soft anisotropy does not make a significant
observed values of about 10% may be considered typical., Thus contribution. But, if eithe; << B3 or 1 >> B3, then the con-

agreement is good both qualitatively and semi-quantistiin

tribution can be significant.



SPIRIT RIVER SANDSTONE

Normalized Uniaxial Shear Strain

0
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Figure 3. For Spirit River Sandstone [25] having bulk modulus Kqy =
7.04 GPa and shear modulus G4y = 11.33 GPa, the locus of points
z = Ré® [see equation (34)] having constant energy U = 900 GPa,
when the linear combination of pure compression and pure uniaxial shear
is interpreted as strain field applied to the stiffness matrix (solid black line).
Otherwise the same type of plot as Figure 1. The ellipse (solid black line)
in this plane corresponds to the more complex curve in Figure 4.
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APPENDIX

The equation of an ellipse centered at the origin whose semi-
major and semi-minor axes are of lengthsindb and whose
angle of rotation with respect to tixeaxis in the(x,y)-plane is@
is given by

(xcosy + ysiny)?/a? + (—xsinP + ycosp)?/b? = 1. (33)

For comparison, when a stress of magnitude/x2 +y2 is ap-
plied to a poroelastic system, the energy stored in the tin{sio
media of interest here [using (16) and (18)] is given by

U (r,8) = 3r? | A;1c0$ B+ 2v/2A13¢090SiN0 + 2Ag3sin? 9}

=RU(ro,0), (34)

where in the second equatiéh= r /rg, andrg in an arbitrary
number (say unity) having the dimensions of stréss, dimen-
sions of Pa). It is not hard to see that, wHe(r,08) = const

SPIRIT RIVER SANDSTONE 1

Normalized Uniaxial Shear Stress

|

|

|

|

|

|

|

|

|

|

|
S~ Ny
K, |/
-2 -1 0 1 2

Normalized Compressional Stress

Figure 4. Same parameters as Figure 3, but the linear combination of
pure compression and pure uniaxial shear is interpreted as a stress field
and is applied to the compliance matrix (dashed blue line). Otherwise the
same as Figure 2. The ellipse (dashed blue line here) corresponds to the
more complex curve in Figure 3. Eq. (29) shows that the areas of the two
rectangles displayed here are equal.

the two equations (33) and (34) have the same functional form
and, therefore, that contours of constant energy in the tmp
(z=x+1y) plane are ellipses. Furthermore, we can solve for the
parameters of the ellipse by settibg= 1 (in arbitrary units for
now) in (34) and then factoringf out of both equations. We find
that

cofyY sy
3All = a2 b2 )
6v/2A13=sin2y (i — i) (35)
az p2)’
sify  cofy
=" T

These three equations can be inverted for the parametehg of t
ellipse, giving:

1 3A11C0S Y — BAgsSInt

a2 cosap ’
1 _ 3A1;|_Sin2 g — 6A330052 1]
P cosay ’ (36)
2V2A13
t =
anay A1l —2A33

Although contours of constant energy are of some interest,



it is probably more useful to our intuition for the poroelastp- [9] Mavko, G., and Jizba, D., 1991, “Estimating grain-sdalel

plication to think instead about contours associated wittliad effects on velocity dispersion in rock&Geophysicss6, pp.
stresses and strains of unit magnitude, for r = 1 (in appropri- 1940-1949.

ate units) and varying from 0 tort. We then have the important  [10] Berryman, J. G., and Wang, H. F., 2001, “Dispersion in
functionU (1,0). [Note that, wherB varies instead between poroelastic systemsPhys. Rev. 64, paper: 011303.

and 21, we just get a copy of the behavior fBrbetween 0 and [11] Berryman, J. G., Pride, S. R., and Wang. H. F.,, 2002, “A
1. The only difference is that the stress and strain vectors ha differential scheme for elastic properties of rocks witly dr
an overall minus sign relative to those on the other halfleir or saturated cracks@eophys. J. Int151, pp. 597-611.

For a linear system, such an overall phase factor of unit inagn [12] Berryman, J. G., Berge, P. A., and Bonner, B. P., 2008ti*E
tude is irrelevant to the mechanics of the problem.] Thewgif mating rock porosity and fluid saturation using only seismic
setU (r,8) = const= R?U (ro,8) and plotz= Re® in the com- velocities,"Geophysics7, pp. 391-404.

plex plane, we will have a plot of the ellipse of interest wirh [13] Berryman, J. G., 2004, “Poroelastic shear modulus depe
determined analytically by dence on pore-fluid properties arising in a model of thin

isotropic layers,’Geophys. J. Int157, pp. 415-425.
[14] Berryman, J. G., 2004, “Seismic waves in finely layered

R=/U(1.8)/U(r0,8) = v/consyU ro.6). (37) VTI media: Poroelasticity, Thomsen parameters, and fluid
effects on shear waves,” submitted@eophysicscurrently

We call R the magnitude of the normalized strese.{ normal- under review.

ized with respect top). [15] Backus, G. E., 1962, “Long-wave elastic anisotropy-pro
The analysis just outlined can then be repeated for the stiff duced by horizontal layeringJd. Geophys. Res67, pp.

ness matrix and applied strain vectors. The mathematicsis c 4427-4440.

pletely analogous to the case already discussed, so weatill n [16] Biot, M. A., and Willis, D. G., 1957, “The elastic coeffi-

repeat it here. Since strain is already a dimensionlesstiygan cients of the theory of consolidation]: Appl. Mech. 24,

the factor that plays the same rolergsabove can in this case pp. 594-601.

be chosen to be unity if desired, as the main purpose of the fac [17] Biot, M. A., 1962, “Mechanics of deformation and acaast

tor ro above was to keep track of the dimensions of the stress propagation in porous medial’ Appl. Phys.33, pp. 1482—

components. 1498.

[18] Berryman, J. G., and Thigpen, L., 1985, “Nonlinear and
semilinear dynamic poroelasticity with microstructurg,”
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